
SMART CONTRACTS REVIEW

January 22nd 2024 | v.	1.0

score

100

PASS
Zokyo Security has concluded that

these smart contracts passed a

security audit.

Security Audit Score

Zokyo Audit Scoring Gain

1

Gain Smart Contracts Review

1. Severity of Issues:

 - Critical: Direct, immediate risks to funds or the integrity of the contract. Typically, these
would have a very high weight.

 - High: Important issues that can compromise the contract in certain scenarios.

 - Medium: Issues that might not pose immediate threats but represent significant
deviations from best practices.

 - Low: Smaller issues that might not pose security risks but are still noteworthy.

 - Informational: Generally, observations or suggestions that don't point to vulnerabilities
but can be improvements or best practices.

2. Test Coverage: The percentage of the codebase that's covered by tests. High test
coverage often suggests thorough testing practices and can increase the score.

3. Code Quality: This is more subjective, but contracts that follow best practices, are well-
commented, and show good organization might receive higher scores.

4. Documentation: Comprehensive and clear documentation might improve the score, as it
shows thoroughness.

5. Consistency: Consistency in coding patterns, naming, etc., can also factor into the score.

6. Response to Identified Issues: Some audits might consider how quickly and effectively
the team responds to identified issues.

Hypothetical Scoring Calculation:

2

Gain Smart Contracts Review

Let's assume each issue has a weight:

- Critical: -30 points

- High: -20 points

- Medium: -10 points

- Low: -5 points

- Informational: -1 point

Starting with a perfect score of 100:

- 0 Critical issues: 0 points deducted

- 0 High issues: 0 points deducted

- 2 Medium issues: 2 resolved = 0 points deducted

- 1 Low issue: = 1 resolved = 0 points deducted

- 6 Informational issues: 6 resolved = 0 points deducted
 

Hence, the score stands at 100.

3

Gain Smart Contracts Review

This document outlines the overall security of the Gain smart contracts evaluated by the
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the Gain smart contracts codebase for
quality, security, and correctness.

There were 0 critical issues found during the review. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contracts but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the Gain team put in place a bug bounty
program to encourage further active analysis of the smart contracts.

https://docs.google.com/document/d/1m2vatjc_MOYvEKxLzVnjVGnjJl3a-oJwYa7b19PeIao/edit#heading=h.y413rcm4r1gs

4

Gain Smart Contracts Review

9Complete Analysis

7Executive Summary

8Structure and Organization of the Document

5Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

5

Gain Smart Contracts Review

Within the scope of this audit, the team of auditors reviewed the following contract(s):

The source code of the smart contract was taken from the Gain repository:  
Repo: https://github.com/GainDAO/token

Last commit -cfaaac2ef42188a61098e809d0deca55383a1336

./PaymentToken.sol

./ERC20Distribution.sol

./GainDAOToken.sol

./ERC20DistributionNative.sol

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most recent vulnerabilities;

Meets best practices in code readability, etc.

https://github.com/GainDAO/token
https://github.com/GainDAO/token/commit/cfaaac2ef42188a61098e809d0deca55383a1336

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Thorough manual review of the
codebase line by line.

6

Gain Smart Contracts Review

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Gain smart contracts. To do so, the code was reviewed line by line by our
smart contract developers, who documented even minor issues as they were discovered. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

7

Gain Smart Contracts Review

Executive Summary

The contracts feature articulate and organized language. The assessment revealed no
critical or high issues but did highlight instances of medium, low, and informational severity.
Detailed explanations of these matters can be found in the "Comprehensive Analysis"
section.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the Gain team and the Gain team is aware of it, but they have chosen to not solve it.
The issues that are tagged as “Verified” contain unclear or suspicious functionality that
either needs explanation from the Client or remains disregarded by the Client. Furthermore,
the severity of each issue is written as assessed by the risk of exploitation or other
unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

8

Gain Smart Contracts Review

Complete Analysis

Findings summary

9

Gain Smart Contracts Review

Resolved

Resolved

Resolved

Resolved

Medium

Informational

Informational

Informational

RiskTitle# Status

Resolved

Resolved

Low

Resolved

Resolved

Resolved

3

Medium

Informational

Informational

Informational

1

Absence of SafeERC20 library in ERC20 asset transfer

5

9

7

2

6

4

8

Signature proof not including a domain separator

Increased deployment cost due to extended error messages

Comments for ERC20Distribution and
ERC20DistributionNative are the same

claimNativeToken can be removed from ERC20Distribution.sol

No access control in startDistribution()

Sender identification discrepancy

Unnecessary redundant variable

Inconsistency between rate calculation and
comment in ERC20DistributionNative

Medium-1 Resolved

Signature proof not including a domain separator

In ERC20DistributionNative.sol & ERC20Distribution.sol - Function purchaseAllowed()
posses the following risk: If a contract does not use a domainSeparator when verifying
signatures: bytes call data proof, it becomes susceptible to cross-domain attacks. An
attacker could potentially take a valid signature from one context (chain, address, ...) and
use it to perform unauthorized actions in a different context.

Recommendation:

See Definition of domainSeparator in eip-712 and follow it to construct a secure proof.

Fix: Issue is addressed in commit a356632 by adding the chain.id and contract address
information to function hashForKYC(). According to requirements specifications of the
project a full eip-712 spec is not needed.

Medium-2 Resolved

No access control in startDistribution()

The initial state of the ERC20Distribution.sol/ERC20DistributionNative.sol is paused (reasons
are unclear, might be due to waiting for the kyc approver to be assigned first or some other
factors). Keeping in mind that the contract should be paused until the devs see fit, anyone
can call the startDistribution() function and unpause the system.

Recommendation:

Unpausing the contract should be done by a privileged role ideally.

10

Gain Smart Contracts Review

https://eips.ethereum.org/EIPS/eip-712

 Low-1 Resolved

Absence of SafeERC20 library in ERC20 asset transfers

The smart contracts under review do not incorporate the SafeERC20 library when
conducting ERC20 token transfers. This has a negative impact when the ERC20 involved in
the transfer does not return value. There exist older ERC20 that did not follow the
standard transfer function prototype and that leads to undesirable outcomes.

Recommendation:

It is advised to use SafeERC20 library to undergo transfers of ERC20 assets.

Fix - Issue resolved in commit cfaaac2 .

11

Gain Smart Contracts Review

https://github.com/GainDAO/token/commit/cfaaac2ef42188a61098e809d0deca55383a1336

Informational-1 Resolved

Unnecessary redundant variable

ERC20DistributionNative - In function purchaseTokens() the variable inittokenbalance
is declared in order to reflect the ERC20 balance of the contract:

uint256 inittokenbalance = _trusted_token.balanceOf(address(this));

but priorly pool_balance served that purpose and the values of both variables are the
same on the moment they are used:

uint256 pool_balance = _trusted_token.balanceOf(address(this));

Recommendation:

Assign the quantity (i.e. ERC20 balance) once.

12

Gain Smart Contracts Review

13

Gain Smart Contracts Review

Informational-2 Resolved

Increased deployment cost due to extended error messages

A significant concern has been identified during the audit, specifically related to the
extensive use of detailed error messages within the smart contracts. While these detailed
error messages offer valuable insights, it's essential to note that they contribute to an
increase in the size of contracts. This, in turn, escalates deployment costs, which are paid in
gas and increase the chance of hitting the deployment size threshold.

One example:

 function mint(address to, uint256 amount) public {

 require(

 hasRole(MINTER_ROLE, _msgSender()),

 "GainDAOToken: _msgSender() does not have the minter role"

);

 _mint(to, amount);

 }

Recommendation:

Use custom error objects (e.g. error UnauthorizedMinter()) or concise short error
codes as revert messages. This issue is shown in all contracts within scope that use
require statements.

14

Gain Smart Contracts Review

Informational-3 Resolved

Sender identification discrepancy

An issue lies in the way the _msgSender() function is used within the smart contracts. The
_msgSender() function is part of the context abstract contract, and it is designed to provide
a way to determine the original sender of a message in a multi-contract system.

The concern here is that using _msgSender() to determine the sender of the function call
might not yield the intended result in the context of the contract. This inconsistency could
lead to unexpected behavior.

In summary, the issue is related to inconsistent usage of msg.sender and _msgSender()
across the contracts. The coding style and usage of these variables need to be aligned for
clarity and correctness.

Recommendation:

To address this concern, developers should ensure that the same method is consistently
used to determine the sender across all contracts. Either use msg.sender consistently or
_msgSender() consistently, depending on the intended behavior.

Fix-1: The issue is partially addressed in commit a356632. All occurrences of _msgSender()
are being replaced by msg.sender. Issue is resolved in all contracts except in
GainDAOToken where both _msgSender() and msg.sender are being used together.

Fix-2:Issue fixed on commit cfaaac2

https://github.com/GainDAO/token/commit/cfaaac2ef42188a61098e809d0deca55383a1336

15

Gain Smart Contracts Review

Informational-4 Resolved

claimNativeToken can be removed from ERC20Distribution.sol

The ERC20Distribution contract uses a fiat token (ERC20) to purchase gain tokens, ETH
cannot be received by this contract (unless forced sent vie self-destruct), therefore the
function claimNativeToken is unnecessary since there can never be ETH in the contract.

Recommendation:

claimNativeToken should be removed from ERC20Distribution.sol

Informational-5 Resolved

Inconsistency between rate calculation and comment in ERC20DistributionNative

In the currentRateUndivided function in ERC20DistributionNative contract, the
_current_distributed_balance increases after each call to purchaseTokens, so the offset_e18
(which is _total_distribution_balance - _current_distributed_balance) decreases. This
calculation causes the current rate to decrease as well, assuming that all other variables
remain constant during the single distribution. However, the comment suggests that the rate
should be ascending, i.e., it should increase as _current_distributed_balance increases. In
this implementation, the opposite happens: the rate decreases as
_current_distributed_balance increases, which is contrary to the intended "ascending
fractional linear rate" behavior.

Recommendation:

Use the adjusted formula or change the mentioned comment.

Client comment: This issue is by design.

16

Gain Smart Contracts Review

Informational-6 Resolved

Comments For ERC20Distribution and ERC20DistributionNative are the same

There are instances in the ERC20Distribution contract where the comments correspond to
the ERC20DistributionNative, such as comments L272 and L273, they mention ether while it
should be the fiat token.

Recommendation:

The comments should be corrected.

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

./PaymentToken.sol

./ERC20Distribution.sol

./GainDAOToken.sol

./ERC20DistributionNative.sol

PassDelegate Call

PassHidden Malicious Code

PassUnchecked Call Return
Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassReentrance

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address / Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

17

Gain Smart Contracts Review

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

Gain

Gain

